Among all modern antibiotics, fluoroquinolones are well known for their broad spectrums of activity and efficiency toward microorganisms and viruses. However, antibiotic resistance is still a problem, which has encouraged medicinal chemists to modify the initial structures in order to combat resistant strains. Our current work is aimed at synthesizing novel hybrid derivatives of ciprofloxacin and norfloxacin and applying docking studies and biological activity evaluations in order to find active promising molecules. We succeeded in the development of a synthetic method towards 1,2,3-triazole-substituted ciprofloxacin and norfloxacin derivatives. The structure and purity of the obtained compounds were confirmed by 1H NMR, 13C NMR, 19F NMR, LC/MS, UV-, IR- spectroscopy. Docking studies, together with in vitro research against Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Bacillus subtilis ATCC 6633, Pseudomonas aeruginosa ATCC 27853, Candida albicans NCTC 885-653 revealed compounds in which activity exceeded the initial molecules.
The aim of the work. Among all the representatives of four generations of fluoroquinolones ciprofloxacin (CIPRO) and norfloxacin (NOR) remain widely used and prescribed antibiotics in clinical practice. However, the problem of resistance towards them is gradually increasing. Thus, our investigation is dedicated to chemical modification of C-7 position of Ciprofloxacin and Norfloxacin ring as a promising solution to combat antibiotic resistance and open a pathway towards convenient synthesis of new fluoroquinolones derivatives.
Materials and methods. The subjects of the research were N-piperazine-substituted ciprofloxacin and norfloxacin. The methods of molecular docking and organic synthesis were applied in the study. The structures of the obtained compounds were confirmed by 1H NMR, 13C NMR, 19F NMR, LC/MS, IR, UV spectroscopy. The antimicrobial activity was measured by the method of double serial dilutions against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Bacillus subtilis (ATCC 6633), Pseudomonas aeruginosa (ATCC 27853), Candida albicans (NCTC 885-653) and diffusion in agar method against clinical strains.
The results. 7-(4-(2-Cyanoacetyl)piperazin-1-yl)-1-R-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acids were synthesized and their structures were confirmed. The obtained compounds showed the antibacterial activity on the reference level for double dilution method and exceeded control for “well” method.
Conclusions. The current investigation revealed the promising route for the expanding of the existing fluoroquinolones diversity. Pharmacodynamics and pharmacokinetics changes could be achieved by chemical modifications of C-7 position of the initial ring. Further research utilizing the obtained compounds as starting ones opens a promising way to novel active molecules synthesis and combating the problem of antibiotic resistance
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.