Baikal-GVD is a cubic-kilometer scale neutrino telescope, which is currently under construction in Lake Baikal. Baikal-GVD is an array of optical modules arranged in clusters. The first cluster of the array has been deployed and commissioned in April 2015. To date, Baikal-GVD consists of 3 clusters with 864 optical modules. One of the vital conditions for optimal energy, position and direction reconstruction of the detected particles is the time calibration of the detector. In this article, we describe calibration equipment and methods used in Baikal-GVD and demonstrate the accuracy of the calibration procedures.
Next generation cubic kilometer scale neutrino telescope Baikal-GVD is currently under construction in Lake Baikal. The detector is specially designed for search for high energies neutrinos whose sources are not yet reliably identified. Since April 2018 the telescope has been successfully operated in complex of three functionally independent clusters i.e. sub-arrays of optical modules (OMs) where now are hosted 864 OMs on 24 vertical strings. Each cluster is connected to shore by individual electro-optical cables. The effective volume of the detector for neutrino initiated cascades of relativistic particles with energy above 100 TeV has been increased up to about 0.15 km3. Preliminary results obtained with data recorded in 2016 and 2017 are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.