Bread wheat (Triticum aestivum), one of the world's major crops, is genetically very diverse. In order to select a representative sample of the worldwide wheat diversity, 3,942 accessions originating from 73 countries were analysed with a set of 38 genomic simple sequence repeat (SSR) markers. The number of alleles at each locus ranged from 7 to 45 with an average of 23.9 alleles per locus. The 908 alleles detected were used together with passport data to select increasingly large sub-samples that maximised both the number of observed alleles at SSR loci and the number of geographical origins. A final core of 372 accessions (372CC) was selected with this M strategy. All the different geographical areas and more than 98% of the allelic diversity at the 38 polymorphic loci were represented in this core. The method used to build the core was validated, by using a second set of independent markers [44 expressed sequence tag (EST)-SSR markers] on a larger sample of 744 accessions: 96.74% of the alleles observed at these loci had already been captured in the 372CC. So maximizing the diversity with a first set of markers also maximised the diversity at a second independent set of locus. To relate the genetic structure of wheat germplasm to its geographical origins, the two sets of markers were used to compute a dissimilarity matrix between geographical groups. Current worldwide wheat diversity is clearly divided according to wheat's European and Asian origins, whereas the diversity within each geographical group might be the result of the combined effects of adaptation of an initial germplasm to different environmental conditions and specific breeding practices. Seeds from each accession of the 372CC were multiplied and are now available to the scientific community. The genomic DNA of the 372CC, which can be entirely contained in a 384-deep-well storage plate, will be a useful tool for future studies of wheat genetic diversity.
Thirteen potentially new leaf rust resistance loci were identified in a Vavilov wheat diversity panel. We demonstrated the potential of allele stacking to strengthen resistance against this important pathogen. Leaf rust (LR) caused by Puccinia triticina is an important disease of wheat (Triticum aestivum L.), and the deployment of genetically resistant cultivars is the most viable strategy to minimise yield losses. In this study, we evaluated a diversity panel of 295 bread wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources (St Petersburg, Russia) for LR resistance and performed genome-wide association studies (GWAS) using 10,748 polymorphic DArT-seq markers. The diversity panel was evaluated at seedling and adult plant growth stages using three P. triticina pathotypes prevalent in Australia. GWAS was applied to 11 phenotypic data sets which identified a total of 52 significant marker-trait associations representing 31 quantitative trait loci (QTL). Among them, 29 QTL were associated with adult plant resistance (APR). Of the 31 QTL, 13 were considered potentially new loci, whereas 4 co-located with previously catalogued Lr genes and 14 aligned to regions reported in other GWAS and genomic prediction studies. One seedling LR resistance QTL located on chromosome 3A showed pronounced levels of linkage disequilibrium among markers (r = 0.7), suggested a high allelic fixation. Subsequent haplotype analysis for this region found seven haplotype variants, of which two were strongly associated with LR resistance at seedling stage. Similarly, analysis of an APR QTL on chromosome 7B revealed 22 variants, of which 4 were associated with resistance at the adult plant stage. Furthermore, most of the tested lines in the diversity panel carried 10 or more combined resistance-associated marker alleles, highlighting the potential of allele stacking for long-lasting resistance.
Einkorn wheat Triticum monococcum (2n=2x=14, A(m)A(m)) is one of the earliest domesticated crops. However, it was abandoned for cultivation before the Bronze Age and has infrequently been used in wheat breeding. Little is known about the genetic variation in adaptively important biological traits in T. monococcum. A collection of 30 accessions of diverse geographic origins were characterized for phenotypic variation in various agro-morphological traits including grain storage proteins and endosperm texture, nucleotide-binding site (NBS) domain profiles of resistance (R) genes and resistance gene analogues (RGAs), and germination under salt and drought stresses. Forty-six SSR (single sequence repeat) markers from bread wheat (T. aestivum, 2n=6x=42, AABBDD) A genome were used to establish trait-marker associations using linear mixed models. Multiple significant associations were identified, some of which were on chromosomal regions containing previously known genetic loci. It is concluded that T. monococcum possesses large genetic diversity in multiple traits. The findings also indicate that the efficiency of association mapping is much higher in T. monococcum than in other plant species. The use of T. monococcum as a reference species for wheat functional genomics is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.