Cyclotron resonance spectra of 2D electrons in HgTe/Cd x Hg 1−x Te (0 1 3) quantum well (QW) heterostructures with inverted band structure have been thoroughly studied in quasiclassical magnetic fields versus the electron concentration varied using the persistent photoconductivity effect. The cyclotron mass is shown to increase with QW width in contrast to QWs with normal band structure. The measured values of cyclotron mass are shown to be systematically less than those calculated using the 8 × 8 Kane model with conventional set of HgTe and CdTe material parameters. In quantizing pulsed magnetic fields (Landau level filling factor less than unity) up to 45 T, both intraband (CR) and interband magnetoabsorption have been studied at radiation wavelengths 14.8 and 11.4 μm for the first time. The results obtained are compared with the allowed transition energies between Landau levels in the valence and conduction bands calculated within the same model, the calculated energies being again systematically less (by 3-14%) than the observed optical transition energies.
The energy spectra of the mercury vacancy, the most common acceptor in HgCdTe material, is studied via numerical calculations and low temperature photoconductivity (PC) measurements of 'vacancy-doped' HgCdTe films with low cadmium content. Since the Hg vacancy is known to be a double acceptor, the model for the helium atom was adopted for degerate valence band of zinc blende semiconductors to classify the observed PC bands. This approach provides a fairly good description of the photoionization of both neutral and singly-ionized vacancy when the central cell potential is taken into account.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.