Permian granulites associated with noritic intrusions and websterites are a common feature of the post-Variscan European crust. Such granulites are common in the Southern Alps (e.g. Ivrea Zone), but occur only in the Gruf Complex in the Central Alps. To understand the geotectonic significance of these granulites, in particular in the context of Alpine migmatisation, zircons from 15 highgrade samples have been U-Pb dated by SHRIMP II analysis. Oscillatory zoned zircons from charnockite sheets, interpreted as melts generated through granulite facies fluid-absent biotite melting at 920-940°C, yield ages of 282-260 Ma. Some of these zircons contain inclusions of opx, unequivocally attributable to the granulite facies, thus confirming a Permian age for the charnockites and associated granulites. Two samples from an enclave-rich orthogneiss sheet yield Cambrian and Ordovician zircon cores. Two deformed leucogranites and six ortho-and augengneisses, which compose two-thirds of the Gruf Complex, give zircon ages of 290-260 Ma. Most zircons have milky rims with ages of 34-29 Ma. These rims date the Alpine amphibolite facies migmatisation, an interpretation confirmed by directly dating a leucosome pocket from upper amphibolite facies metapelites. The Gruf charnockites associated with metre-scale schlieren and boudins of opx-sapphirine-garnet-granulites, websterites and gabbronorites can thus be identified as part of the postVariscan European lower crust. A geotectonic reconstruction reveals that this piece of lower crust stranded in the (European) North upon rifting of the Neotethys, such contrasting the widespread granulite units in the Southern Alps. Emplacement of the Gruf lower crust into its presentday position occurred during migmatisation and formation of the Bergell Pluton in the aftermath of the breakoff of the European slab.
The hot emplacement of the Ronda peridotites (Betic Cordilleras) developed a dynamothermal aureole and partial melts that led to the intrusion of granite dykes in the peridotites. Previous geochronological data place rather broad limits for this event between 22 and 19 Ma. Analyses of neocrystalline zircon rims from large zircon populations yield a U-Pb SHRIMP age of 22.3 ± 0.7 Ma for the dynamothermal aureole formation, and intrusion ages of granite dykes between 22.6 ± 1.8 and 21.5 ± 3.8 support that conclusion. Therefore, these new ages provide a more robust constraint on the hot emplacement of the Ronda peridotites at middle crustal levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.