The influence of a galaxy’s environment on its evolution has been studied and compared extensively in the literature, although differing techniques are often used to define environment. Most methods fall into two broad groups: those that use nearest neighbours to probe the underlying density field and those that use fixed apertures. The differences between the two inhibit a clean comparison between analyses and leave open the possibility that, even with the same data, different properties are actually being measured. In this work, we apply 20 published environment definitions to a common mock galaxy catalogue constrained to look like the local Universe. We find that nearest‐neighbour‐based measures best probe the internal densities of high‐mass haloes, while at low masses the interhalo separation dominates and acts to smooth out local density variations. The resulting correlation also shows that nearest‐neighbour galaxy environment is largely independent of dark matter halo mass. Conversely, aperture‐based methods that probe superhalo scales accurately identify high‐density regions corresponding to high‐mass haloes. Both methods show how galaxies in dense environments tend to be redder, with the exception of the largest apertures, but these are the strongest at recovering the background dark matter environment. We also warn against using photometric redshifts to define environment in all but the densest regions. When considering environment, there are two regimes: the ‘local environment’ internal to a halo best measured with nearest neighbour and ‘large‐scale environment’ external to a halo best measured with apertures. This leads to the conclusion that there is no universal environment measure and the most suitable method depends on the scale being probed.
We introduce the The Three Hundred project, an endeavour to model 324 large galaxy clusters with full-physics hydrodynamical re-simulations. Here we present the dataset and study the differences to observations for fundamental galaxy cluster properties and scaling relations. We find that the modelled galaxy clusters are generally in reasonable agreement with observations with respect to baryonic fractions and gas scaling relations at redshift z = 0. However, there are still some (model-dependent) differences, such as central galaxies being too massive, and galaxy colours (g −r) being bluer (about 0.2 dex lower at the peak position) than in observations. The agreement in gas scaling relations down to 10 13 h −1 M between the simulations indicates that particulars of the sub-grid modelling of the baryonic physics only has a weak influence on these relations. We also include -where appropriate -a comparison to three semianalytical galaxy formation models as applied to the same underlying dark matter only simulation. All simulations and derived data products are publicly available.observed properties of the Intra-Cluster Medium (ICM), the size of the central brightest cluster galaxy and the number and properties of the satellite galaxies orbiting within a common dark matter envelope. Clusters of galaxies can therefore be considered to be large cosmological laboratories that are useful for pinning down both cosmological parameters and empirical models of astrophysical processes acting across a range of coupled scales.Concerted effort, from both observational and theoretical perspectives, has been devoted to improve our understanding of the formation and evolution of galaxy clusters. On the observational side, multi-wavelength telescopes are
Near field cosmology is practiced by studying the Local Group (LG) and its neighbourhood. The present paper describes a framework for simulating the "near field" on the computer. Assuming the ΛCDM model as a prior and applying the Bayesian tools of the Wiener filter (WF) and constrained realizations of Gaussian fields to the Cosmicflows-2 (CF2) survey of peculiar velocities, constrained simulations of our cosmic environment are performed. The aim of these simulations is to reproduce the LG and its local environment. Our main result is that the LG is likely a robust outcome of the ΛCDM scenario when subjected to the constraint derived from CF2 data, emerging in an environment akin to the observed one. Three levels of criteria are used to define the simulated LGs. At the base level, pairs of halos must obey specific isolation, mass and separation criteria. At the second level the orbital angular momentum and energy are constrained and on the third one the phase of the orbit is constrained. Out of the 300 constrained simulations 146LGs obey the first set of criteria, 51 the second and 6 the third. The robustness of our LG 'factory' enables the construction of a large ensemble of simulated LGs. Suitable candidates for high resolution hydrodynamical simulations of the LG can be drawn from this ensemble, which can be used to perform comprehensive studies of the formation of the LG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.