Abstract. We present BV RcIc broad-band flux spectra for the host galaxies of GRB 970508, GRB 980613, GRB 980703, GRB 990123 and GRB 991208 obtained with the 6-m telescope of SAO RAS. The comparison of the broad-band flux spectra of these host galaxies with the template spectral energy distributions (SEDs) of local starburst galaxies of different morphological types shows that the BV RcIc of the hosts are best fitted by the spectral properties of template SEDs of starburst galaxies and that there is a significant internal extinction in these host galaxies. We derived the absolute magnitudes of the GRB host galaxies making use of SEDs for the starburst galaxies. To create theoretical templates we performed the population synthesis modeling of the continuum spectral energy distribution of the host galaxies of GRB 970508 and GRB 980703 using different extinction laws (Cardelli et al. 1989 andCalzetti et al. 2000) and assuming burst and exponential scenarios of star formation. The comparison of BV RcIc broad-band flux spectra with the local starburst galaxies templates and theoretical templates as well as direct estimates (using Balmer emission lines) of the internal extinction shows that it is likely to be of great importance to take into account effects of the internal extinction in the host galaxies. From the energy distribution in the spectrum of the host galaxy of GRB 991208 and from the intensity of their spectral lines (with allowance for the effects of internal extinction) it follows that this is a GRB galaxy with the highest massive star-formation rate of all known GRB galaxies -up to hundreds of solar masses per year. The reduced luminosity of these dusty galaxies (e.g. for the host of GRB 970508 AV ∼ 2 mag, for the host of GRB 980703 AV ∼ 0.6 mag and for the host of GRB 991208 AV ∼ 2 mag) could explain the observational fact (it results independently from our BV RcIc photometry and from calculated spectral distribution for the subset of galaxies having been observed with the 6-m telescope): none of the observed GRB host galaxies with known distances is brighter than the local galaxies with the luminosity L * (where L * is the "knee" of the local luminosity function).
We present the first sample of tidal disruption events (TDEs) discovered during the SRG all-sky survey. These 13 events were selected among X-ray transients detected in the 0 < l < 180○ hemisphere by eROSITA during its second sky survey (10 June–14 December 2020) and confirmed by optical follow-up observations. The most distant event occurred at z = 0.581. One TDE continued to brighten at least 6 months. The X-ray spectra are consistent with nearly critical accretion on to black holes of a few × 103 to 108 M⊙, although supercritical accretion is possibly taking place. In two TDEs, a spectral hardening is observed 6 months after the discovery. Four TDEs showed an optical brightening apart from the X-ray outburst. The other 9 TDEs demonstrate no optical activity. All 13 TDEs are optically faint, with Lg/LX < 0.3 (Lg and LX being the g-band and 0.2–6 keV luminosity, respectively). We have constructed a TDE X-ray luminosity function, which can be fit by a power law with a slope of −0.6 ± 0.2, similar to the trend observed for optically selected TDEs. The total rate is estimated at (1.1 ± 0.5) × 10−5 TDEs per galaxy per year, an order of magnitude lower than inferred from optical studies. This suggests that X-ray bright events constitute a minority of TDEs, consistent with models predicting that X-rays can only be observed from directions close to the axis of a thick accretion disk formed from the stellar debris. Our TDE detection threshold can be lowered by a factor of ∼2, which should allow a detection of ∼700 TDEs by the end of the SRG survey.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.