To contribute molecular diversity for novel fungicide development, a series of novel thiazole carboxamides were rationally designed, synthesized, and characterized with the succinate dehydrogenase (SDH) as target. Bioassay indicated that compound 6g showed the similar excellent SDH inhibition as that of Thifluzamide with IC 50 of 0.56 mg/L and 0.55 mg/L, respectively. Some derivatives displayed improved in vitro fungicidal activities against Rhizoctonia cerealis and Sclerotinia sclerotiorum with EC 50 of 1.2−16.4 mg/L and 0.5−1.9 mg/L. Surprisingly, 6g showed promising in vitro fungicidal activities against R. cerealis and S. sclerotiorum with EC 50 of 6.2 and 0.6 mg/L, respectively, which was superior to Thifluzamide with the EC 50 of 22.1 and 4.4 mg/L, respectively. Additionally, compounds 6c and 6g displayed excellent in vivo fungicidal activities against S. sclerotiorum on Brassica napus L. leaves with protective activity of 75.4% and 67.3% at 2.0 mg/L, respectively, while Thifluzamide without activity at 5.0 mg/L. Transcriptomic analysis of S. sclerotiorum treated with 6g by RNA sequencing indicated the down-regulation of succinate dehydrogenase gene SDHA and SDHB, and the inhibition of the TCA-cycle.
In searching for novel fungicidal leads, the novel bioactive succinate dehydrogenase inhibitor (SDHI) derivatives were designed and synthesized by the inversion of carbonyl and amide groups. Bioassay indicated that compound 5i stood out with a broad spectrum of in vitro activity against five fungi. Its EC50 value (0.73 μg/mL) was comparable to that of boscalid (EC50 of 0.51 μg/mL) and fluxapyroxad (EC50 of 0.19 μg/mL) against Sclerotinia sclerotiorum. For Rhizoctonia cerealis, 5i and 5p with EC50 values of 4.61 and 6.48 μg/mL, respectively, showed significantly higher activity than fluxapyroxad with the EC50 value of 16.99 μg/mL. In vivo fungicidal activity of 5i exhibited an excellent inhibitory rate (100%) against Puccinia sorghi at 50 μg/mL, while the positive control boscalid showed only a 70% inhibitory rate. Moreover, 5i showed promising fungicidal activity with a 60% inhibitory rate against Rhizoctonia solani at 1 μg/mL, which was better than that of boscalid (30%). Compound 5i possessed better in vivo efficacy against P. sorghi and R. solani than boscalid. Molecular docking showed that even the carbonyl oxygen atom of 5i was far from the pyrazole ring. It could also form hydrogen bonds toward the hydroxyl hydrogen and amino hydrogen of TYR58 and TRP173 on SDH, respectively, which consisted of the positive control fluxapyroxad. Fluorescence quenching analysis and SDH enzymatic inhibition studies also validated its mode of action. Our studies showed that 5i was worthy of further investigation as a promising fungicide candidate.
Synthesis, isomerism, and fungicidal activity against potato diseases of new (5 Z)-[2-(2,4,5-trioxopyrrolidin-3-ylidene)-4-oxo-1,3-thiazolidin-5-ylidene]acetate derivatives with 1,3-thiazolidine-4-one and pyrrolidine-2,3,5-trione moieties linked by an exocyclic C═C bond were described. Their structures were clearly confirmed by spectroscopic and spectrometric data (Fourier transform infrared spectroscopy, H andC nuclear magnetic resonance, and mass spectrometry), elemental analysis, and X-ray diffraction crystallography. A bioassay for antifungal activity in vitro against Phytophthora infestans, Fusariun solani, Alternaria solani, Rhizoctonia solani, and Colletotrichum coccodes demonstrated that 2,4,5-trioxopyrrolidin-1,3-thiazolidine derivatives exhibited a relatively broad spectrum of antifungal activity. One of the compounds showed considerable activity against all of the strains; in the case of F. solani, P. infestans, and A. solani, it possesses comparable or better fungicidal efficacy than the positive control Consento. Consequently, this compound is a promising fungicidal candidate for plant protection.
The fluctuation of the angular positions of reference extragalactic radio and optical sources under the influence of the irregular gravitational field of visible Galactic stars is considered. It is shown that these angular fluctuations range from a few up to hundreds of microarcseconds. This leads to a small rotation of the celestial reference frame. The nondiagonal coefficients of the rotation matrix are of the order of a microarcsecond. The temporal variation of these coefficients due to the proper motion of the foreground stars is of the order of one microsecond per 20 years. Therefore, the celestial reference frame can be considered inertial and homogeneous only to microarcsecond accuracy. Astrometric catalogues with microarcsecond accuracy will be unstable, and must be reestablished every 20 years.Comment: 5 pages, 2 figures, accepted to MNRA
Natural products are one of the resources for discovering novel fungicidal leads. As a natural fungicide, osthole was used as a coumarin-based lead compound for the development of novel fungicides. Here, a series of 3,4-dichloroisothiazolecontaining 7-hydroxycoumarins were rationally designed, synthesized, and characterized by introducing a bioactive substructure, 3,4-dichloroisothiazole, into the coumarin skeleton. In vitro bioassay indicated that compound 7g displayed good activity against Rhizoctonia solani, Physalospora piricola, Sclerotinia sclerotiorum, and Botrytis cinerea. Its median effective concentration (EC 50 ) value against each of these fungi fell between 0.88 and 2.50 μg/mL, which was much lower than that of osthole against the corresponding pathogen (between 7.38 and 74.59 μg/mL). In vivo screening validated that 7k exhibited 100%, 60%, and 20% efficacy against R. solani Kuḧn at 200, 100, and 50 μg/mL, respectively. RNA sequence analysis implied that growth inhibition of R. solani by 7k might result from potential disruptions of fungal membrane formation and intracellular metabolism. Furthermore, a field experiment with cucumber plants indicated that 7b showed 62.73% and 74.03% efficacy against Pseudoperonospora cubensis (Berk. & Curt.) Rostov. at rates of 12.5 g a.i./ha and 25 g a.i./ha, respectively, which showed no significant difference between 7b and osthole at 30 g a.i./ha. Our studies suggested that 7b, 7g, and 7k might be used as fungicidal leads for further optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.