The cancer stem cells (CSC) are the roots of cancer. The CSC hypothesis may provide a model to explain the tumor cell heterogeneity. Understand the biological mechanism of CSC will help the early detection and cure of cancer. The discovery of the dynamic changes in CSC will be possible by the using of bio-engineering techniques-lineage tracing. However, it is difficult to obtain real-time, continuous, and dynamic live-imaging information using the traditional approaches that take snapshots of time points from different animals. The goal of molecular imaging is to monitor the in situ, continuous molecular changes of cells in vivo. Therefore, the most advanced bioengineering lineage tracing approach, while using a variety of molecular detection methods, will maximize the presentation of CSC. In this review, we first introduce the method of lineage tracing, and then introduce the various components of molecular images to dynamic detect the CSC. Finally, we analyze the current situation and look forward the future of CSC detection.
Impairing reconsolidation may disrupt drug memories to prevent relapse, meanwhile long-term transcription regulations in the brain regions contribute to the occurrence of emotional memories. The basolateral amygdala (BLA) is involved in the drug-cue association, while the nucleus accumbens (NAc) responds to the drug reward. Here, we assessed whether DNA methyltransferases (Dnmts) in these two brain regions function identically in the reconsolidation of morphine reward memory. We show that Dnmts inhibition in the BLA but not in the NAc after memory retrieval impaired reconsolidation of a morphine reward memory. Moreover, the mRNA levels of Dnmt3a and Dnmt3b, rather than Dnmt1, in the BLA were continuously upregulated after retrieval. We further identified the differentially methylated regions (DMRs) in genes in the BLA after retrieval, and focused on the DMRs located in gene promoter regions. Among them were three genes (Gnas, Sox10, and Pik3r1) involved in memory modulation. Furthermore, Gnas promoter hypermethylation was confirmed to be inversely correlated with the downregulation of Gnas mRNA levels. The findings indicate that the specific transcription regulation mechanism in the BLA and NAc on reconsolidation of opiate-associated memories can be dissociable, and DNA hypermethylation of Gnas in the BLA is necessary for the reconsolidation of morphine reward memories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.