Dianella ensifolia is a perennial herb with thickened rhizome and is widely distributed in tropical and subtropical regions of Asia, Australia, and the Pacific islands. This plant has the potential to be used as a source of herbal medicine. This study investigated further phytochemistry and tyrosinase inhibitory effect of some constituents isolated from D. ensifolia. Four new flavans, (2S)-4’-hydroxy-6,7-dimethoxyflavan (1), (2S)-3’,4’-dihydroxy-7-methoxy-8-methylflavan (2), (2S)-2’-hydroxy-7-methoxyflavan (3), and (2S,1′S)-4-hydroxy-4-(7-methoxy-8-methylchroman-2-yl)-cyclohex-2-enone (4), together with 67 known compounds, including 10 flavans (5–14), 5 flavanones (15–19), 3 flavone (20–22), 5 chalcones (23–27), 3 chromones (28–30), 15 aromatics (31–45), 7 phenylpropanoids (46–52), one lignan (53), 7 steroids (54–60), one monoterpene (61), one diterpene (62), 4 triterpenes (63–66), a carotenoid (67), 2 alkaloids (68 and 69), and 2 fatty acids (70 and 71) were isolated from D. ensifolia. Their structures were elucidated on the basis of physical and spectroscopic data analyses. Moreover, compounds 1–4, 8, 10–15, 20, 21, and 41 were evaluated for their mushroom tyrosinase inhibitory effect. Compounds 11 and 14 strongly inhibited mushroom tyrosinase activity with IC50 values of 8.6 and 14.5 μM, respectively.