Interaction of zinc(II) and cadmium(II) sulfates with pyridine-4-aldoxime (4-pyao) and pyridine-4amidoxime (4-pyamo) ligands resulted in four 1D metal− organic materials (MOMs) with identical composition, [M(SO 4 )A 2 (H 2 O) 2 ] n , where M = Zn(II), A = 4-pyao for 1, M = Cd(II), A = 4-pyao for 2, M = Zn(II), A = 4-pyamo for 3, M = Cd(II), A = 4-pyamo for 4, and mononuclear [Zn(SO 4 )(4-pyamo) 2 (H 2 O) 3 ] 5. New coordination polymers represent the mixed-ligand supramolecular isomers different by the twisting of two pyridine-4-oxime ligands in the metal coordination environments, and crystallizing in the different space groups.Conformational preferences and nonlinear optical properties of the 4-pyao and 4-pyamo complexes were investigated using density functional theory. Spectral properties of 1−3 have been also evaluated. The solid-state emission of 1D polymers 1−3 appears to be ligand-based, as the positions of the emission maxima remain practically unchanged from free ligand to complexes. The enhancement of luminescence and twophoton absorption in polymers in comparison with the pure ligands is attributed to the chelation of the ligand to the metal center. The detailed mechanism of this enhancement upon complex formation is analyzed and can be used in future design of metal−organic nonlinear optical materials.