We have explored the excitatory amino acid antagonist activity in a series of decahydroiso-quinoline-3-carboxyic acids, and within this series found the potent and selective AMPA antagonist (3SR,4aRS,6RS,8aRS)-6-(2-(1H-tetrazol-5-yl )ethyl) decahydroisoquinoline-3-carboxylic acid (1). In this and the preceding paper, we looked at the structure-activity relationships for AMPA antagonist activity in this series of compounds. We have already shown that 1 had the optimal stereochemical array and that AMPA antagonist activity was maximized for a two-carbon spacer separating a tetrazole from the bicyclic nucleus. In this paper, we explored the effects of varying the distal acid and the absolute stereochemical preferences of many of these analogs. We looked at a variety of different acid bioisosteres, including 5-membered hetereocyclic acids such as tetrazole, 1,2,4-triazole, and 3-isoxazolone; carboxylic,phosphonic, and sulfonic acid; and acyl sulfonamides. Compounds were evaluated in rat cortical tissue for their ability to inhibit the binding of radioligands selective for AMPA ([3H]AMPA), NMDA ([3H]CGS 19755), and kainic acid ([3H]kainic acid) receptors and for their ability to inhibit depolarizations induced by AMPA (40 microM), NMDA (40 microM), and kainic acid (10 microM). A number of compounds from this and the preceding paper were also evaluated in mice for their ability to block maximal electroshock-induced convulsions and ATPA-induced rigidity in mice.