Treatment of the lithium amide Li[NPh(SiMe3)] with 2,4,6-tri-tert-butyl-1,3,5-triphosphabenzene, P(3)C(3)tBu(3), in a 1:2 ratio afforded equimolar amounts of the lithium salt of the five-membered 2,4,5-tri-tert-butyl-1,3-diphospholide anion, LiP(2)C(3)tBu(3) (isolated as its N,N,N',N'-tetramethylethylenediamine (TMEDA) adduct), and the tricyclic compound 6-[phenyl(trimethylsilyl)amino]-3,5,7-tri-tert-butyl-1,2,4,6-tetraphosphatricyclo[3.2.0.0(2,7)]hept-3-ene. Both compounds have been structurally characterised by single-crystal X-ray diffraction studies. The mechanism of this remarkable reaction has been elucidated by theoretical methods at the B3LYP/6-311+G** level of theory. The reaction involves a hitherto unobserved aminophosphinidene, which was formed by abstraction of a phosphorus atom from triphosphabenzene. The intermediate aminophosphinidene, which is further stabilised by the solvent THF, shows, in agreement with previous theoretical predictions, enhanced stability and reacts then with a second molecule of triphosphabenzene.