Direct activation of inert C(sp3)−H bonds by main group element species is yet a formidable challenge. Herein, the dehydrogenation of cyclohexene and 1,2,3,4‐tetrahydronaphthalene through the allylic/benzylic and homoallylic/homobenzylic C−H bond activation by cyclic (alkyl)(amino)silylene 1 in neat conditions is reported to yield the corresponding aromatic compounds. As for the reaction of cyclohexene, allylsilane 3 and 7‐silanorbornene 4 were also observed, which could be interpreted as a direct dehydrogenative silylation reaction of monoalkenes at the allylic positions. Experimental and computational studies suggest that the dehydrogenation of cyclohexene at the homoallylic position was accomplished by a combination of silylene 1 and radical intermediates such as hydrosilyl radical INT1 or cyclohexenyl radical H, which are generated in the initial step of the reaction.