In this study, we investigated the effects of chronic administration of an inhibitor of the b-site amyloid precursor protein-cleaving enzyme 1 (BACE1) on Alzheimer-related pathology by multitracer PET imaging in transgenic APPPS1-21 (TG) mice. Methods: Wild-type (WT) and TG mice received vehicle or BACE inhibitor (60 mg/kg) starting at 7 wk of age. Outcome measures of brain metabolism, neuroinflammation, and amyloid-b pathology were obtained through small-animal PET imaging with 18 F-FDG, 18 F-peripheral benzodiazepine receptor ( 18 F-PBR), and 18 F-florbetapir ( 18 F-AV45), respectively. Baseline scans were acquired at 6-7 wk of age and follow-up scans at 4, 7, and 12 mo. 18 F-AV45 uptake was measured at 8 and 13 mo of age. After the final scans, histologic measures of amyloid-b (4G8), microglia (ionized calcium binding adaptor molecule 1), astrocytes (glial fibrillary acidic protein), and neuronal nuclei were performed. Results: TG mice demonstrated significant age-associated increases in 18 F-AV45 uptake. An effect of treatment was observed in the cortex (P 5 0.0014), hippocampus (P 5 0.0005), and thalamus (P , 0.0001). Histology confirmed reduction of amyloid-b pathology in TG-BACE mice. Regardless of treatment, TG mice demonstrated significantly lower 18 F-FDG uptake than WT mice in the thalamus (P 5 0.0004) and hippocampus (P 5 0.0332). Neuronal nucleus staining was lower in both TG groups in the thalamus and cortex. 18 F-PBR111 detected a significant age-related increase in TG mice (P , 0.0001) but did not detect the treatment-induced reduction in activated microglia as demonstrated by histology. Conclusion: Although 18 F-FDG, 18 F-PBR111, and 18 F-AV45 all detected pathologic alterations between TG and WT mice, only 18 F-AV45 could detect an effect of BACE inhibitor treatment. However, changes in WT binding of 18 F-AV45 undermine the specificity of this effect.