The viscoelastic properties of the epoxy filled with silica nanoparicles have been investigated by dynamic nanoindentation and characterized by the storage modulus and loss tangent. The materials studied are neat epoxy and silica/epoxy composites with silica volume fraction of 1, 3, 6, 10, and 14 vol %, respectively. The silica nanoparticles with an average diameter of 25 nm are found to disperse homogeneously in the epoxy matrix. The effect of the particle content, force frequency, and penetration load on the viscoelastic behavior is studied and discussed. The comparison with traditional testing methods such as tension, bending, and DMTA is made. Besides, theoretical results by using micromechanics models are also obtained and compared with the experimental results.