S. cerevisiae has two OG-specific glycosylase/lyases, which differ significantly in their preference for the base opposite the lesion. We suggest that one of these, Ogg1, is closely related in overall three-dimensional structure to Escherichia coli endonuclease III (endo III), a glycosylase/lyase that acts on fragmented and oxidatively damaged pyrimidines. We have recently shown that AlkA, a monofunctional DNA glycosylase that acts on alkylated bases, is structurally homologous to endo III. We have now identified a shared active site motif amongst these three proteins. Using this motif as a protein database searching tool, we find that it is present in a number of other base-excision DNA repair proteins that process diverse lesions. Thus, we propose the existence of a DNA glycosylase superfamily, members of which possess a common fold yet act upon remarkably diverse lesions, ranging from UV photoadducts to mismatches to alkylated or oxidized bases.