Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The (1þ1)-dimensional nonlinear Klein-Gordon-Zakharov equation considered as a model equation for describing the interaction of the Langmuir wave and the ion acoustic wave in high frequency plasma. By the execution of the exp(-Φ(ξ))-expansion, we obtain new explicit and exact traveling wave solutions to this equation. The obtained solutions include kink, singular kink, periodic wave solutions, soliton solutions and solitary wave solutions of bell types. The variety of structure and graphical representation make the dynamics of the equations visible and provides the mathematical foundation in plasma physics and engineering.
This paper investigates the orbital stability of solitary waves for the coupled Klein–Gordon–Zakharov (KGZ) equations utt−uxx+u+αuv+β|u|2u=0,vtt−vxx=(|u|2)xx, where α ≠ 0. Firstly, we rewrite the coupled KGZ equations to obtain its Hamiltonian form. And then, we present a pair of sech‐type solutions of the coupled KGZ equations. Because the abstract orbital stability theory presented by Grillakis, Shatah, and Strauss (1987) cannot be applied directly, we can extend the abstract stability theory and use the detailed spectral analysis to obtain the stability of the solitary waves for the coupled KGZ equations. In our work, α = 1,β = 0 are advisable. Hence, we can also obtain the orbital stability of solitary waves for the classical KGZ equations which was studied by Chen. Copyright © 2016 John Wiley & Sons, Ltd.
In this article, we propose an exponential wave integrator sine pseudospectral (EWI‐SP) method for solving the Klein–Gordon–Zakharov (KGZ) system. The numerical method is based on a Deuflhard‐type exponential wave integrator for temporal integrations and the sine pseudospectral method for spatial discretizations. The scheme is fully explicit, time reversible and very efficient due to the fast algorithm. Rigorous finite time error estimates are established for the EWI‐SP method in energy space with no CFL‐type conditions which show that the method has second order accuracy in time and spectral accuracy in space. Extensive numerical experiments and comparisons are done to confirm the theoretical studies. Numerical results suggest the EWI‐SP allows large time steps and mesh size in practical computing. © 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 266–291, 2016
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.