Abstract. A key limitation of volcanic forcing datasets for the Pinatubo period, is the large uncertainty that remains with respect to the extent of the optical depth of the Pinatubo aerosol cloud in the first year after the eruption, the saturation of the SAGE-II instrument restricting it to only be able to measure the upper part of the aerosol cloud in the tropics. Here we report the recovery of stratospheric aerosol measurements from two ship-borne lidars, both of which measured the tropical reservoir of volcanic aerosol produced by the June 1991 Mount Pinatubo eruption. The lidars were on-board two Soviet vessels, each ship crossing the Atlantic, their measurement datasets providing unique observational transects of the Pinatubo cloud across the tropics from Europe to the Caribbean (~ 40° N to 8° N) from July to September 1991 (the Prof Zubov ship) and from Europe to south of the Equator (8° S to ~ 40° N) between January and February 1992 (the Prof Vize ship). Our philosophy with the data recovery is to follow the same algorithms and parameters appearing in the two peer-reviewed articles that presented these datasets in the same issue of GRL in 1993, and here we provide all 48 lidar soundings made from the Prof. Zubov, and 11 of the 20 conducted from the Prof. Vize, ensuring we have reproduced the aerosols backscatter and extinction values in the Figures of those two papers. These original approaches used thermodynamic properties from the CIRA-86 standard atmosphere to derive the molecular backscattering, vertically and temporally constant values applied for the aerosol backscatter to extinction ratio and the correction factor of the aerosols backscattering wavelength dependence. We demonstrate this initial validation of the recovered stratospheric aerosol extinction profiles, providing full details of each dataset in this paper's Supplement S1, the original text files of the backscatter ratio, the calculated aerosols backscatter and extinction profiles. We anticipate the data providing potential new observational case studies for modelling analyses, including a 1-week series of consecutive soundings (in September 1991) at the same location showing the progression of the entrainment of part of the Pinatubo plume into the upper troposphere and the formation of an associated cirrus cloud. The Zubov lidar dataset illustrates how the tropically confined Pinatubo aerosol cloud transformed from a highly heterogeneous vertical structure in August 1991, maximum aerosol extinction values around 19 km for the lower layer and 23–24 for the upper layer, to a more homogeneous and deeper reservoir of volcanic aerosol in September 1991. We encourage modelling groups to consider new analyses of the Pinatubo cloud, comparing to the recovered datasets, with the potential to increase our understanding of the evolution of the Pinatubo aerosol cloud and its effects. Data described in this work are available at https://doi.pangaea.de/10.1594/PANGAEA.912770 (Antuña-Marrero et al., 2020).