A scheme to infer the temporal coherence of EUV frequency combs generated from intracavity highorder harmonic generation is put forward. The excitation dynamics of highly charged Mg-like ions, which interact with EUV pulse trains featuring different carrier-envelope-phase fluctuations, are simulated. While demonstrating the microscopic origin of the macroscopic equivalence between excitations induced by pulse trains and continuous-wave lasers, we show that the coherence time of the pulse train can be determined from the spectrum of the excitations. The scheme will provide a verification of the comb temporal coherence at timescales several orders of magnitude longer than current state of the art, and at the same time will enable high-precision spectroscopy of EUV transitions with a relative accuracy up to δω=ω ∼ 10 −17 .