The maximum data throughput in a single mode optical fibre is a function of both the signal bandwidth and the wavelength-dependent signal-to-noise ratio (SNR). In this paper, we investigate the use of hybrid discrete Raman & rare-earth doped fibre amplifiers to enable wide-band signal gain, without spectral gaps between amplification bands. We describe the widest continuous coherent transmission bandwidth experimentally demonstrated to date of 16.83 THz, achieved by simultaneously using the S-, C-and L-bands. The variation of fibre parameters over this bandwidth, together with the hybrid amplification method result in a significant SNR wavelengthdependence. To cope with this, the signal was optimised for each SNR, wavelength and transmission band. By using a system-tailored set of geometrically shaped constellations, we demonstrate the transmission of 660⇥25 GBd channels over 40 km, resulting in a record single mode fibre net throughput of 178.08 Tbit/s. Index Terms-Broadband transmission system, high order modulation format, geometric shaping.