Two di-tert-butylphenols incorporating an N-methylbenzimidazole moiety in the ortho or para position have been synthesised ((Me)OH and (pMe)OH, respectively). Their X-ray structures evidence a hydrogen bond between the phenolic proton and the iminic nitrogen atom, whose nature is intra- and intermolecular, respectively. The present studies demonstrate that (Me)OH is readily oxidised by an intramolecular PET mechanism to form the hydrogen-bonded phenoxyl-N-methylbenzimidazolium system ((Me)OH)(.+) , whereas oxidation of (pMe)OH occurs by intermolecular PET, affording the neutral phenoxyl benzimidazole ((pMe)O)(.) system. The deprotonations of (Me)OH and (pMe)OH yield the corresponding phenolate species ((Me)O)(-) and ((pMe)O)(-), respectively, whilst that of the previously reported (H)OH (analogous to (Me)OH but lacking the N-methyl group) produces an unprecedented hydrogen-bonded phenol benzimidazolate species, as evidenced by its X-ray structure. The latter is believed to be in equilibrium in solution with its tautomeric phenolate form, as suggested by NMR, electrochemistry and DFT studies. The one-electron oxidations of the anions occur by a simple ET process affording phenoxyl radical species, whose electronic structure has been studied by HF-EPR spectroscopy and DFT calculations. In particular, analysis of the g(1) tensor shows the order 2.0079>2.0072>2.0069>2.0067 for ((Me)O)(.), ((H)O)(.), ((Me)OH)(.+) and ((H)OH)(.+), respectively. ((Me)O)(.) exhibits the largest g(1) tensor (2.0079), consistent with the absence of intramolecular hydrogen bond. The g(1) tensor of ((H)O)(.) is intermediate between those of ((Me)OH)(.+) and ((Me)O)(.) (g(1)=2.0072), indicating that the phenoxyl oxygen is hydrogen-bonded with a neutral benzimidazole partner.