Background: Micro patterns represent design decisions in code. They are similar to design patterns and can be detected automatically. These micro structures can be helpful in identifying portions of code which should be improved (anti-micro patterns), or other well-designed parts which need to be preserved. The concepts expressed in these design decisions are dened at class-level; therefore the primary goal is to detect and provide information related to a specic granularity level. Aim: this paper aims to present preliminary results about a longitudinal study performed on anti-micro pattern distributions over 113 versions of Tomcat. Method: we rst extracted the micro patterns from the 113 versions of Tomcat, then found the percentage of classes matching each of the six anti-micro pattern considered for this analysis, and studied correlations among the obtained time series after testing for stationarity, randomness and seasonality. Results: results show that the time series are stationary, not random (except for Function Pointer), and that additional studied are needed for studying seasonality. Regarding correlations, only the Pool and Record time series presented a correlation of 0.69, while moderate correlation has been found between Function Pointer and Function Object (0.58) and between Cobol Like and Pool (0.44).