Background: Positron emission tomography (PET) is a well-recognized technique used in research, especially for intracranial studies, as well as for clinical practice, and has contributed to the fast development in neuroscience during the last decades. Procedures: We have used PET in pituitary tumors for in vivo characterization with respect to metabolism, 11C-L-methionine and 18F-fluorodeoxyglucose, receptor properties, 11C-N-methylspiperone and 11C-raclopride, and monoamine oxidase B enzyme content, 11C-L-deprenyl; further, for diagnosing and outlining the tumors in differential diagnostic perspectives and in the follow-up of treatment. Observations:11C-raclopride, a specific dopamine antagonist, demonstrated high amounts of dopamine D2 binding in prolactinomas and some growth hormone-secreting adenomas. There was a significant correlation between high amounts of D2 receptors and the positive treatment effect of dopamine agonist therapy. When 11C-L-methionine and 18F-fluorodeoxyglucose were used for metabolic mapping, the highest metabolic activity was found in the prolactinomas, which correlated well with the serum prolactin levels. The growth hormone adenomas also showed high metabolic rates. At treatment follow-up, a considerable decrease in 11C-L-methionine uptake was observed in all tumors that responded positively to the treatment and thus foretold that the medical treatment, both concerning dopamine agonist and somatostatin analogue, was effective. In this respect, PET was valuable to monitor treatment. PET was also shown valuable in differential diagnosing between pituitary adenomas, meningiomas and skull base neuromas. Conclusion: We have found PET to be highly valuable in the research and clinical handling of patients with a pituitary adenoma for in vivo tumor characterization.