Alcohol use disorder (AUD) affects millions of people and represents a significant health and economic burden. Pain represents a frequently under-studied aspect of hyperkatifeia during alcohol withdrawal, yet to date no drugs have received FDA approval for the treatment of this indication in AUD patients. This study aims to evaluate the potential of targeting bioactive lipid signaling pathways as a therapeutic approach for treating alcohol withdrawal-related pain. We utilized a chronic intermittent ethanol (CIE) vapor exposure model in C57BL/6J mice to establish alcohol dependence, and demonstrated that CIE mice developed robust tactile allodynia and thermal hyperalgesia during withdrawal that was independent of prior blood alcohol levels. Next, we evaluated four drugs for their efficacy in reversing tactile allodynia during abstinence from CIE using a cross-over treatment design that included FDA-approved naltrexone as well as commercially available inhibitors targeting inflammatory lipid signaling enzymes including fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and 15-Lipoxygenase (LOX). None of these compounds produced significant therapeutic benefit in reversing established CIE-induced tactile allodynia, despite attenuating pain-like behaviors at these doses in other chronic pain models. These findings underscore the need for novel therapeutic approaches to mitigate pain in AUD patients.