Variational Methods 2016
DOI: 10.1515/9783110430394-012
|View full text |Cite
|
Sign up to set email alerts
|

12. Higher variational equation techniques for the integrability of homogeneous potentials

Abstract: We present several methods using higher variational equations to study the integrability of Hamiltonian systems from the algebraic and computational point of view. Through the Morales Ramis Simo theorem, strong integrability conditions can be computed for Hamiltonian systems, allowing us to prove nonintegrability even for potentials with parameters. This theorem can, in particular, be applied to potentials, even transcendental ones, by properly defining them on complex Riemann surfaces. In the even more partic… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 14 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?