A new and regioselective strategy was developed for the preparation of fluorine-18-labeled insulin as a novel positron emission tomography (PET) tracer. [18F]-4-Fluorobenzoic acid (4-18FBA), which was produced in 83 +/- 8% yield (n = 10), through the use of succinimidyl [18F]-4-fluorobenzoate (4-(18)FSB), was conjugated through a short spacer (6-aminohexanoic acid, AHx) to the PheB1 residue of a protected form of insulin. 18FB-AHx-insulin (8b) was repeatedly prepared in practical quantities (10-20 mCi, 370-740 MBq) in good radiochemical yield (9 +/- 5%, n = 9) and in a specific activity of 7.8 mCi/micromol. The final product was characterized by comparing the radioHPLC and radioTLC of 8b with that of the 19F-analogue (19FB-AHx-insulin, 8a) and by analyzing a carrier-added synthesis by mass spectrometry. Dithiothreitol and endoproteinase Glu-C digestion experiments on 8a confirmed that the prosthetic group was in fact conjugated to the PheB1 residue. An insulin receptor (IR) phosphorylation assay using CHO-hIR cells overexpressing recombinant human insulin receptors indicated no statistical difference in the extent of autophosphorylation stimulated by 8a as compared to that for human insulin (EC50 values of 0.82 nM and 1.0 nM, respectively). The stimulation of 2-deoxyglucose uptake in 3T3-L1 mouse adipocytes utilizing 8a versus unmodified human insulin gave similar EC50 values of 0.68 nM and 0.41 nM, respectively. The IC50 values for 8a versus native insulin for the displacement of 125I-insulin from HEK-293 cells were also the same within experimental error (2.6 nM for 8a versus 2.4 nM for unmodified human insulin). These results support the use of the 18F-insulin analogue as a PET tracer for imaging the distribution of insulin in vivo.