The published literature relating to damage to planar solid oxide fuel cells caused by thermally induced stresses and thermal cycling is reviewed. This covers reported studies of thermal cycling performance and stresses induced by temperature gradients and differences in thermal expansion coefficients in typical planar SOFC configurations, namely electrolyte supported; anode supported and inert substrate supported cells. Generally good agreement is found between electrolyte residual stresses measured by X-ray diffraction or cell curvature and stresses calculated from simple thermo-elastic analysis. Finite element modelling of temperature distributions in cells and stacks in steady state operation are well advanced and capable of being extended to compute stress distributions. Failure criteria are then discussed for laminated cell structures based on critical energy release rate fracture mechanics models developed originally for coatings. However, in most cases the data required to apply the models quantitatively (such as elastic moduli of actual laminated material and fracture energies of materials and interfaces) are not available. Where data are available there are inconsistencies that require resolution. Seals are critical components in many planar solid oxide fuel cell configurations, but again there are discrepancies in experimental mechanical properties and the role of internal stresses in their fracture. In addition, there is as yet no firm evidence that thermal cycling damage involves any true materials fatigue process.
Effect of thermal cycling on SOFC integrityTaniguchi et al. 7 investigated the thermal cycling performance of electrolyte supported planar SOFCs