We demonstrate single-mode microdisk lasers in the telecom band with ultralow thresholds on erbium-ytterbium co-doped thin-film lithium niobate (TFLN). The active microdisk was fabricated with high-Q factors by photolithography-assisted chemomechanical etching. Thanks to the erbium-ytterbium co-doping providing high optical gain, the ultralow loss nanostructuring, and the excitation of high-Q coherent polygon modes, which suppresses multimode lasing and allows high spatial mode overlap between pump and lasing modes, single-mode laser emission operating at 1530 nm wavelength was observed with an ultralow threshold, under a 980-nm-band optical pump. The threshold was measured as low as 1 μW, which is one order of magnitude smaller than the best results previously reported in single-mode active TFLN microlasers. The conversion efficiency reaches 4.06 × 10 -3 , which is also the highest value reported in single-mode active TFLN microlasers.