PURPOSE
To determine whether the morphological parameters of prostate zones and tumors on magnetic resonance imaging (MRI) can predict the tumor-stage (T-stage) of prostate cancer (PCa) and establish an optimal T-stage diagnosis protocol based on three-dimensional reconstruction and quantization after image segmentation.
METHODS
A dataset of the prostate MRI scans and clinical data of 175 patients who underwent biopsy and had pathologically proven PCa from January 2018 to November 2020 was retrospectively analyzed. The authors manually segmented and measured the volume, major axis, and cross-sectional area of the peripheral zone (PZ), transition zone, central zone (CZ), anterior fibromuscular stroma, and tumor. The differences were evaluated by the One-Way analysis of variance, Pearson’s chi-squared test, or independent samples
t
-test. Spearman’s correlation coefficient and receiver operating characteristic curve analyses were also performed. The cut-off values of the T-stage diagnosis were generated using Youden’s J index.
RESULTS
The prostate volume (PV), PZ volume (PZV), CZ volume, tumor’s major axis (TA), tumor volume (TV), and volume ratio of the TV and PV were significantly different among stages T1 to T4. The cut-off values of the PV, PZV, CZV, TA, TV, and the ratio of TV/PV for the discrimination of the T1 and T2 stages were 53.63 cm
3
, 11.60 cm
3
, 1.97 cm
3
, 2.30 mm, 0.90 cm
3
, and 0.03 [area under the curves (AUCs): 0.628, 0.658, 0.610, 0.689, 0.724, and 0.764], respectively. The cut-off values of the TA, TV, and the ratio of TV/PV for the discrimination of the T2 and T3 stages were 2.80 mm, 8.29 cm
3
, and 0.12 (AUCs: 0.769, 0.702, and 0.688), respectively. The cut-off values of the TA, TV, and the ratio of TV/PV for the discrimination of the T3 and T4 stages were 4.17 mm, 18.71 cm
3
, and 0.22 (AUCs: 0.674, 0.709, and 0.729), respectively.
CONCLUSION
The morphological parameters of the prostate zones and tumors on the MRIs are simple and valuable diagnostic factors for predicting the T-stage of patients with PCa, which can help make accurate diagnoses and lateral treatment decisions.