Carbonyl groups that bear an α stereocenter are commonly found in bioactive compounds, and intense effort has therefore been dedicated to the pursuit of stereoselective methods for constructing this motif. While the chiral auxiliary-enabled coupling of enolates with alkyl electrophiles represented groundbreaking progress in addressing this challenge, the next advance in the evolution of this enolate−alkylation approach would be to use a chiral catalyst to control stereochemistry. Herein we describe the achievement of this objective, demonstrating that a nickel catalyst can accomplish enantioselective intermolecular alkylations of racemic Reformatsky reagents with unactivated electrophiles; the resulting α-alkylated carbonyl compounds can be converted in one additional step into a diverse array of ubiquitous families of chiral molecules. Applying a broad spectrum of mechanistic tools, we have gained insight into key intermediates (including the alkylnickel(II) resting state) and elementary steps of the catalytic cycle.