We find strong evidence for a metal-insulator (MI) transition in macroscopic single wall carbon nanotube conductors. This is revealed by systematic measurements of resistivity and transverse magnetoresistance (MR) in the ranges 1.9-300 K and 0-9 Tesla, as a function of p-type redox doping. Strongly H 2 SO 4 -doped samples exhibit small negative MR, and the resistivity is low and only weakly temperature dependent. Stepwise de-doping by annealing in vacuum induces a MI transition. Critical behavior is observed near the transition, with ρ(T) obeying power-law temperature dependence, ρ(T) ∝ T -β . In the insulating regime (high annealing temperatures) the ρ(T) behavior ranges from Mott-like 3-dimensional (3D) variable-range hopping