2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA) 2016
DOI: 10.1109/apsipa.2016.7820687
|View full text |Cite
|
Sign up to set email alerts
|

2-Dimensional high-quality reconstruction of compressive measurements of phased array weather radar

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
4
0
2

Year Published

2017
2017
2021
2021

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 9 publications
(6 citation statements)
references
References 10 publications
0
4
0
2
Order By: Relevance
“…The defined matrix Θ = ΦΨ −1 where Θ ∈ C M ×N , represents a dual dictionary, usually called the sensing matrix. Based on (18), there are many combinations to reconstruct vector X, calledX. However, the advantage of the dual dictionary is its high compressibility because it consists of only a few significant coefficients.…”
Section: A Direct Subsampling Of the Beat Signal (Cs-fd)mentioning
confidence: 99%
See 1 more Smart Citation
“…The defined matrix Θ = ΦΨ −1 where Θ ∈ C M ×N , represents a dual dictionary, usually called the sensing matrix. Based on (18), there are many combinations to reconstruct vector X, calledX. However, the advantage of the dual dictionary is its high compressibility because it consists of only a few significant coefficients.…”
Section: A Direct Subsampling Of the Beat Signal (Cs-fd)mentioning
confidence: 99%
“…Shimamura et al [16] exploited the discrete wavelet transform (DWT) and DCT to represent a one-dimensional range in sparsity domain and then reduced the data using Gaussian random selection. Ryosuke et al [17], [18] proposed DCT for sparsity technique to reduce the two-dimensional and three-dimensional of phased array weather radar (PAWR). Different from the others, Mishra et al [19] represented the sparsity data by modeling the matrix of weather data into the low-rank matrix using singular value decomposition (SVD).…”
Section: Introductionmentioning
confidence: 99%
“…Makalah lainnya yaitu (Kawami, et al, 2016) dan juga telah mengusulkan metode CS untuk kompresi radar cuaca jenis Phased Array Weather Radar (PAWR). Pada penelitian pertama, penulis meneliti kompresi radar cuaca untuk 2 dimensi sedangkan pada makalah kedua, kompresi radar cuaca dilakukan untuk 3 dimensi.…”
Section: Pendahuluanunclassified
“…Pada makalah ini, mengusulkan metode CS dengan menggunakan DCT sebagai metode transformasi sparsitas dan rekonstruksi ℓ pada data rill sinyal beat radar IWarp. Penelitian CS untuk radar cuaca dengan metode transformasi sparsitas menggunakan DCT sudah pernah dilakukan oleh (Kawami, et al, 2016) namun teknik rekonstruksi yang mereka gunakan adalah dengan mencari nilai minimum Total Variance, sedangkan pada makalah ini mengusulkan teknik rekonstruksi dengan menggunakan minimasi ℓ . Teknik ℓ sebagai bagian dari teknik basis pursuit yang digunakan pada makalah ini karena memiliki tingkat kecepatan yang lebih tinggi berdasarkan hasil penelitian pada makalah sebelumnya (Purnamasari, Suksmono, Edward, & Zakia, 2018).…”
Section: Pendahuluanunclassified
“…Mishra et al [14] proposed an unconventional weather radar paradigm that employs compressed sensing techniques to reduce the radar scan time without any significant loss of target information. Kawami et al [15,16] proposed an effective three-dimensional compressive sensing method for the phased array weather radar (PAWR), which achieves normalized errors of less than 10% for a 25% compression ratio that outperforms conventional two-dimensional methods. These approaches use the compression sensing technique to reduce the amount of data based on the sparsity of weather radar signals.…”
Section: Introductionmentioning
confidence: 99%