OBJECTIVEThe Pediatric Artificial Pancreas (PedArPan) project tested a children-specific version of the modular model predictive control (MMPC) algorithm in 5-to 9-yearold children during a camp.
RESEARCH DESIGN AND METHODSA total of 30 children, 5-to 9-years old, with type 1 diabetes completed an outpatient, open-label, randomized, crossover trial. Three days with an artificial pancreas (AP) were compared with three days of parent-managed sensoraugmented pump (SAP).
RESULTSOvernight time-in-hypoglycemia was reduced with the AP versus SAP, median (25 th -75 th percentiles): 0.0% (0.0-2.2) vs. 2.2% (0.0-12.3) (P 5 0.002), without a significant change of time-in-target, mean: 56.0% (SD 22.5) vs. 59.7% (21.2) (P 5 0.430), but with increased mean glucose 173 mg/dL (36) vs. 150 mg/dL (39) (P 5 0.002). Overall, the AP granted a threefold reduction of time-in-hypoglycemia (P < 0.001) at the cost of decreased time-in-target, 56.8% (13.5) vs. 63.1% (11.0) (P 5 0.022) and increased mean glucose 169 mg/dL (23) vs. 147 mg/dL (23) (P < 0.001).
CONCLUSIONSThis trial, the first outpatient single-hormone AP trial in a population of this age, shows feasibility and safety of MMPC in young children. Algorithm retuning will be performed to improve efficacy.Only three artificial pancreas (AP) trials have focused on the prepubertal population so far: two single-hormone AP studies, performed inpatient for less than 1 day (1,2) and a recent dual-hormone AP study, performed in a camp for 5 days (3). Here we report the first outpatient single-hormone AP trial focusing on 5-to 9-year-old children.Data were collected in the Pediatric Artificial Pancreas (PedArPan) camp, where sensor-augmented pump (SAP) therapy was compared with the modular model predictive control algorithm (MMPC) (4,5), running on the wearable platform Diabetes Assistant (DiAs) (6).