Coumarins or benzo-2-pyrone derivatives are one of the most significant families of natural compounds and are also important in synthetic organic chemistry. They have been widely used as starting materials or precursor molecules in the pharmaceutical, perfumery and agrochemical industries, etc. Hydroxycoumarins are an important class of coumarin compounds that possess several physical, chemical and biological properties. Among the hydroxycoumarins, 3-hydroxycoumarin seems to be the most important because of its numerous chemical, photochemical and biological properties. However, this compound remains less well known compared to others of the same class such as 7-hydroxycoumarin and 4-hydroxycoumarin. This study is therefore devoted to 3-hydroxycoumarin and its applications. The main purpose of this review is to summarize and document the recent advances on 3-hydroxycoumarin, concerning the main routes of its synthesis, its reactivity, its applications in different fields of biology. Several methods for the synthesis of 3-hydroxycoumarin have been described in the literature, most of which use salicylic aldehyde and 1-(2-hydroxyphenyl)ethanone as starting compounds. Other synthesis pathways exist, but they are based on intermediate synthesis compounds. Concerning the reactivity of 3-hydroxycoumarin, many heterocyclic compounds obtained from 3-hydroxycoumarin have been reported in the literature. Among these heterocycles are pyrido[2,3-c]coumarin derivatives, chromeno[4,3-e][1,3]oxazine derivatives, dihydropyrano[2,3-c] chromenes and 3-coumarinyl carboxylates. Various researches have also concerned the biological properties of this compound. It appears from these numerous studies that 3-hdroxycoumarin is used in fields such as genetics, pharmacology, microbiology, etc.