Batch experiments were conducted to investigate the capacity and mechanisms for adsorbing Cd 2þ from aqueous solutions by the composite material. The composite material was manufactured with Plesiomonas shigelloides strain H5 and modified polyacrylonitrile-based carbon fiber. Experimental results showed that the surface areas of modified polyacrylonitrilebased carbon fiber increased by 58.54% and pore width increased by 40.19% compared with unmodified polyacrylonitrile-based carbon fiber. Boehm's titration results show the surface acid sites of composite material were increased by 712% compared with unmodified polyacrylonitrilebased carbon fiber. The field emission scanning electron microscope results show P. shigelloides H5 can be grown on the surface of modified polyacrylonitrile-based carbon fiber closely. The equilibrium removal rate and sorption quantity of composite material were 71.56% and 7.126 mg g À1 , respectively. With the pH value of aqueous solution increased, the removal rate of Cd 2þ ions was also increased, but the change of temperature and ionic strength had no significant effect on the removal rate. Furthermore, the results showed the whole sorption process was a good fit to Lagergren pseudo-second-order model and Freundlich isotherms model. Therefore, the results infer that there was a heterogeneous distribution of active sites, and then the sorption process was chemical adsorption and multilayer adsorption. In a word, microbial composite carbon fiber material can adsorb Cd 2þ ions from aqueous solution effectively, which might be helpful in wastewater treatment in the future.