BACKGROUND:The COVID-19 pandemic has led to an increased demand for mechanical ventilators and concerns of a ventilator shortage. Several groups have advocated for 1 ventilator to ventilate 2 or more patients in the event of such a shortage. However, differences in patient lung mechanics could make sharing a ventilator detrimental to both patients. Our previous study indicated failure to ventilate in 67% of simulations. The safety problems that must be solved include individual control of tidal volume (V T ), individual measurement of V T , individualization of PEEP settings, and individual PEEP measurement. The purpose of this study was to evaluate potential solutions developed at our institution. METHODS: Two separate lung simulators were ventilated with a modified multiplex circuit using pressure control ventilation. Parameters of the lung models used for simulations (resistance and compliance) were evidence-based from published studies. Individual circuit-modification devices were first evaluated for accuracy. Devices were an adjustable flow diverter valve, a prototype dual volume display, a PEEP valve, and a disposable PEEP display. Then the full modified multiplex circuit was assessed by ventilating 6 pairs of simulated patients with different lung models and attempting to equalize ventilation. Ventilation was considered equalized when V T and end-expiratory lung volume were within 10% for each simulation. RESULTS: The adjustable flow diverter valve allowed volume adjustment to 1 patient without affecting the other. The average error of the dual volume display was -17%. The PEEP valves individualized PEEP, but the PEEP gauge error ranged from 17% to 41%. Using the multiplex circuit, ventilation was equalized regardless of differences in resistance or compliance, reversing the "failure modes" of our previous study. CONCLUSIONS: The results of this simulation-based study indicate that devices for individual control and display of V T and PEEP are effective in extending the usability and potential patient safety of multiplex ventilation.