With the introduction of various antennas in the field of antenna technology, most of the constraints related to the transmission and receiving of the signals at different intervals have been resolved. By the rapid growth in industry and consequently high demands in the communication arena, the conventional antennas are unable to respond to these extended requirements. However, those initial antennas were suitably used in the field of technology. In the recent decades, by introducing new antenna technologies such as metamaterial structures, substrate integrated waveguide (SIW) structures and microstrip antennas with various feeding networks could meet the demands of the current systems. As stated before, in the frequency ranges of below 30 GHz, antenna size and bandwidth are of the important issues, so that novel antennas can be created in low frequencies, which are able to achieve reliable radiation properties when combined with new multiband antennas. Generally, transmission lines are practical in low frequencies and short distances, while higher frequencies are mainly used due to bandwidth goals. This chapter is organized into three subsections related to the 5G wireless communication systems: antennas below 15 GHz or accordingly antennas with wavelength less than 1/20; antennas operating between 15 and 30 GHz; higher frequency antennas or millimeter-wave antennas, which are desired for above 40 GHz.