Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A novel scheme is proposed for direction finding with uniform rectangular planar array. First, the characteristics of noncircular signals and Euler’s formula are exploited to construct a new real-valued rectangular array data. Then, the rotational invariance relations for real-valued signal space are depicted in a new way. Finally the real-valued propagator method is utilized to estimate the pairing two-dimensional direction of arrival (2D-DOA). The proposed algorithm provides better angle estimation performance and can discern more sources than the 2D propagator method. At the same time, it has very close angle estimation performance to the noncircular propagator method (NC-PM) with reduced computational complexity.
We provide a complete study on the direction-of-arrival (DOA) estimation of noncircular (NC) signals for uniform linear array (ULA) via Vandermonde constrained parallel factor (PARAFAC) analysis. By exploiting the noncircular property of the signals, we first construct an extended matrix which contains two times sampling number of the received signal. Then, taking the Vandermonde structure of the array manifold matrix into account, the extended matrix can be turned into a tensor model which admits the Vandermonde constrained PARAFAC decomposition. Based on this tensor model, an efficient linear algebra algorithm is applied to obtain the DOA estimation via utilizing the rotational invariance between two submatrices. Compared with some existing algorithms, the proposed method has a better DOA estimation performance. Meanwhile, the proposed method consistently has a higher estimation accuracy and a much lower computational complexity than the trilinear alternating least square-(TALS-) based PARAFAC algorithm. Finally, numerical examples are conducted to demonstrate the effectiveness of the proposed approach in terms of estimation accuracy and computational complexity.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.