We use femtosecond laser-based two-photon polymerization (TPP) to fabricate a 2.5D micropillar array. Using an angular detection setup, we characterize the structure’s scattering properties and compare the results against simulation results obtained from a novel electrodynamics simulation method. The algorithm employs a modified formulation of the Lorentz Oscillator Model and a leapfrog time differentiation to define a 2D coupled Oscillator Finite-Difference Time-Domain (O-FDTD). We validate the model by presenting several simulation examples that cover a wide range of photonic components, such as multi-mode interference splitters, photonic crystals, ring resonators, and Mach-Zehnder interferometers.