Recently, palmprints have been broadly reported in the literature as an effective biometric modality. Although scaleinvariant feature transform (SIFT)-based features have been proven to be robust against image transformations and deformations, SIFT has not been as successful as other methods in palmprint recognition. In fact, SIFT-based identification has been widely criticised in biometrics due to its high false matching rate. To overcome this weakness, a new filtering method for SIFT-based palmprint matching, called the self-geometric relationship-based filter (SGR-filter) is presented. While existing SIFT matching considers only the relationship between the SIFT points of the query image, on one hand, and their corresponding points in the reference image, on the other hand, SGR-filtering further takes into account the geometric relationship between SIFT points within the query image in comparison with the relationship of the corresponding matched points in the reference image. Assessed with the proposed SGR-filter on various datasets, the SIFT-based palmprint recognition system has been shown to deliver significantly higher performance when compared with the conventional SIFT matching as well as another related key-points filtering technique. Furthermore, experimental results on a number of different full and partial palmprint datasets have shown the superiority of the proposed system over state-of-the-art techniques.