Ground deformation poses a serious threat to the safety of subway structures. Consequently, intelligent and efficient automated safety monitoring of ground deformation along the subway has become urgent. Traditional engineering observation methods have the disadvantages of difficulties with datum selection, non-automation, and poor reliability. A ground deformation monitoring system for subway structure safety based on the Global Navigation Satellite System (GNSS) was established and validated through experimental comparisons with traditional precision leveling in this study. Based on the GNSS monitoring points, the continuous kinematic observation GNSS data of ground deformation along the subway line were obtained; a joint robust local mean decomposition (RLMD)–singular value decomposition (SVD) noise-reduction processing method for GNSS signals was proposed to realize the real-time and high-precision monitoring of ground deformation. The results show that the proposed combined noise-reduction method can reduce the maximum noise amplitude by 86%. When compared with the accuracy of the traditional precision leveling method, it was determined that the vertical positioning accuracy of the deformation monitoring system is greater than 2.7 mm, the horizontal positioning accuracy is greater than 1.3 mm, and the measurement error is less than 1.5 mm. The deformation monitoring system has the advantages of convenience, automation, and high accuracy and can be applied to ground deformation monitoring for subway structures.