Among patients with chronic hepatitis C (CHC) infection, extensive research showed that fibrosis progression is a proper surrogate marker for advanced liver disease, eventually leading to dramatic endpoints such as cirrhosis and hepatocellular carcinoma. Therefore, there is growing interest in the use of noninvasive methods for fibrosis assessment in order to replace liver biopsy (LB) in clinical practice and provide optimal risk stratification. Elastographic techniques, such as Vibration Controlled Transient Elastography (VCTE), point-shear wave elastography (p-SWE), and 2D-SWE have shown promising results in this regard, with excellent performance in diagnosing hepatic cirrhosis, and great accuracy for steatosis detection through the Controlled Attenuation Parameter embedded on the VCTE device. In addition, the recent introduction of highly efficient direct-acting antivirals (DAAs) led to viral eradication and a significant decrease in liver damage, lowering the risk of hepatic decompensation, and HCC. Therefore, CHC patients need proper noninvasive and repeatable methods for adequate surveillance, even after treatment, as there still remains a risk of portal hypertension and HCC. However, the usefulness for monitoring fibrosis after the sustained virological response (SVR) needs further research.