We introduce a class of pulsed third-spin-assisted recoupling (P-TSAR) magic-angle-spinning (MAS) solid-state NMR techniques that achieve efficient polarization transfer over long distances to provide important restraints for structure determination. These experiments operate with the same principle as continuous-wave (CW) TSAR experiments, by utilizing second-order cross terms between strong 1 H-13 C and 1 H-15 N dipolar couplings to achieve 13 C-13 C and 13 C-15 N polarization transfer. However, in contrast to the CW-TSAR experiments, these pulsed P-TSAR experiments require much less radiofrequency (rf) energy and allow a much simpler routine for optimizing the rf field strength. We call the techniques PULSAR (PULSed proton Asissted Recoupling) for homonuclear spin pairs and PERSPIRATION CP (Proton-Enhanced Rotor-echo Short Pulse IRradiATION Cross-Polarization) for heteronuclear spin pairs. We demonstrate these techniques on the model protein GB1, and found cross peaks for distances as long as 10 and 8 Å for 13 C-13 C and 15 N-13 C spin pairs, respectively. We also apply these methods to the amyloid fibrils formed by the peptide hormone glucagon, and show that longrange correlation peaks are readily observed to constrain intermolecular packing in this cross-b fibril. We provide an analytical model for the PULSAR and PERSPIRATION CP experiments to explain the measured and simulated chemical shift dependence and pulse flip angle dependence of polarization transfer. These two techniques are useful for measuring long-range distance restraints to determine the three-dimensional structures of proteins and other biological macromolecules.