A 1.2 kV SiC MOSFET with an integrated heterojunction diode and p-shield region (IHP-MOSFET) was proposed and compared to a conventional SiC MOSFET (C-MOSFET) using numerical TCAD simulation. Due to the heterojunction diode (HJD) located at the mesa region, the reverse recovery time and reverse recovery charge of the IHP-MOSFET decreased by 62.5% and 85.7%, respectively. In addition, a high breakdown voltage (BV) and low maximum oxide electric field (EMOX) could be achieved in the IHP-MOSFET by introducing a p-shield region (PSR) that effectively disperses the electric field in the off-state. The proposed device also exhibited 3.9 times lower gate-to-drain capacitance (CGD) than the C-MOSFET due to the split-gate structure and grounded PSR. As a result, the IHP-MOSFET had electrically excellent static and dynamic characteristics, and the Baliga’s figure of merit (BFOM) and high frequency figure of merit (HFFOM) were increased by 37.1% and 72.3%, respectively. Finally, the switching energy loss was decreased by 59.5% compared to the C-MOSFET.