2020
DOI: 10.48550/arxiv.2010.08970
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

3-fold Massey products in Galois cohomology -- The non-prime case

Ido Efrat

Abstract: For m ≥ 2, let F be a field of characteristic prime to m and containing the roots of unity of order m, and let G F be its absolute Galois group. We show that the 3-fold Massey products χ 1 , χ 2 , χ 3 , with χ 1 , χ 2 , χ 3 ∈ H 1 (G F , Z/m) and χ 1 , χ 3 Z/m-linearly independent, are non-essential. This was earlier proved for m prime. Our proof is based on the study of unitriangular representations of G F .A major open problem in modern Galois theory is to characterize the profinite groups which are realizabl… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 18 publications
(32 reference statements)
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?