Purpose
The high probability of the occurrence of separation bubbles or shocks and early transition to turbulence on surfaces of airfoil makes it very difficult to design high-lift and high-speed Natural-Laminar-Flow (NLF) airfoil for high-altitude long-endurance unmanned air vehicles. To resolve this issue, a framework of uncertainty-based design optimization (UBDO) is developed based on an adjusted polynomial chaos expansion (PCE) method.
Design/methodology/approach
The γ ̄Re-θt transition model combined with the shear stress transport
k-ω turbulence model is used to predict the laminar-turbulent transition. The particle swarm optimization algorithm and PCE are integrated to search for the optimal NLF airfoil. Using proposed UBDO framework, the aforementioned problem has been regularized to achieve the optimal airfoil with a tradeoff of aerodynamic performances under fully turbulent and free transition conditions. The tradeoff is to make sure its good performance when early transition to turbulence on surfaces of NLF airfoil happens.
Findings
The results indicate that UBDO of NLF airfoil considering Mach number and lift coefficient uncertainty under free transition condition shows a significant deterioration when complicated flight conditions lead to early transition to turbulence. Meanwhile, UBDO of NLF airfoil with a tradeoff of performances under both fully turbulent and free transition conditions holds robust and reliable aerodynamic performance under complicated flight conditions.
Originality/value
In this work, the authors build an effective uncertainty-based design framework based on an adjusted PCE method and apply the framework to design two high-performance NLF airfoils. One of the two NLF airfoils considers Mach number and lift coefficient uncertainty under free transition condition, and the other considers uncertainties both under fully turbulent and free transition conditions. The results show that robust design of NLF airfoil should simultaneously consider Mach number, lift coefficient (angle of attack) and transition location uncertainty.