Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
A possible goal of fundamental physics is to reduce all natural phenomena to a set of basic laws and theories which, at least in principle, can quantitatively reproduce and predict experimental observations. At the microscopic level all the phenomenology of matter and radiation, including molecular, atomic, nuclear, and subnuclear physics, can be understood in terms of three classes of fundamental interactions: strong, electromagnetic, and weak interactions. For all material bodies on the Earth and in all geological, astrophysical, and cosmological phenomena, a fourth interaction, the gravitational force, plays a dominant role, but this remains negligible in atomic and nuclear physics. In atoms, the electrons are bound to nuclei by electromagnetic forces, and the properties of electron clouds explain the complex phenomenology of atoms and molecules. Light is a particular vibration of electric and magnetic fields (an electromagnetic wave). Strong interactions bind the protons and neutrons together in nuclei, being so strongly attractive at short distances that they prevail over the electric repulsion due to the like charges of protons. Protons and neutrons, in turn, are composites of three quarks held together by strong interactions occur between quarks and gluons (hence these particles are called "hadrons" from the Greek word for "strong"). The weak interactions are responsible for the beta radioactivity that makes some nuclei unstable, as well as the nuclear reactions that produce the enormous energy radiated by the stars, and in particular by our Sun. The weak interactions also cause the disintegration of the neutron, the charged pions, and the lightest hadronic particles with strangeness, charm, and beauty (which are "flavour" quantum numbers), as well as the decay of the top quark and the heavy charged leptons (the muon and the tau £ ). In addition, all observed neutrino interactions are due to these weak forces.All these interactions (with the possible exception of gravity) are described within the framework of quantum mechanics and relativity, more precisely by a local relativistic quantum field theory. To each particle, treated as pointlike, is associated
A possible goal of fundamental physics is to reduce all natural phenomena to a set of basic laws and theories which, at least in principle, can quantitatively reproduce and predict experimental observations. At the microscopic level all the phenomenology of matter and radiation, including molecular, atomic, nuclear, and subnuclear physics, can be understood in terms of three classes of fundamental interactions: strong, electromagnetic, and weak interactions. For all material bodies on the Earth and in all geological, astrophysical, and cosmological phenomena, a fourth interaction, the gravitational force, plays a dominant role, but this remains negligible in atomic and nuclear physics. In atoms, the electrons are bound to nuclei by electromagnetic forces, and the properties of electron clouds explain the complex phenomenology of atoms and molecules. Light is a particular vibration of electric and magnetic fields (an electromagnetic wave). Strong interactions bind the protons and neutrons together in nuclei, being so strongly attractive at short distances that they prevail over the electric repulsion due to the like charges of protons. Protons and neutrons, in turn, are composites of three quarks held together by strong interactions occur between quarks and gluons (hence these particles are called "hadrons" from the Greek word for "strong"). The weak interactions are responsible for the beta radioactivity that makes some nuclei unstable, as well as the nuclear reactions that produce the enormous energy radiated by the stars, and in particular by our Sun. The weak interactions also cause the disintegration of the neutron, the charged pions, and the lightest hadronic particles with strangeness, charm, and beauty (which are "flavour" quantum numbers), as well as the decay of the top quark and the heavy charged leptons (the muon and the tau £ ). In addition, all observed neutrino interactions are due to these weak forces.All these interactions (with the possible exception of gravity) are described within the framework of quantum mechanics and relativity, more precisely by a local relativistic quantum field theory. To each particle, treated as pointlike, is associated
• The group must admit a completely antisymmetric colour singlet baryon made up of three quarks, viz., qqq. In fact, from the study of hadron spectroscopy, we know that the low-lying baryons, completing an octet and a decuplet of (flavour) SU.3/ (the approximate symmetry that rotates the three light quarks u, d, and s), are made up of three quarks and are colour singlets. The qqq wave function must be completely antisymmetric in colour in order to agree with Fermi statistics. Indeed, if we consider, for example, a N CC with spin z-component +3/2, this is made up of .u " u " u "/ in an s-state. Thus its wave function is totally symmetric in space, spin, and flavour, so that complete antisymmetry in colour is required by Fermi statistics. In QCD this requirement is very simply satisfied by
We start by specifying L gauge , which involves only gauge bosons and fermions, according to the general formalism of gauge theories discussed in Chap. 1:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.