Terahertz (THz) radiation lies between the micro and far-infrared range in the electromagnetic spectrum. Compared with microwave and millimeter waves, it has a larger signal bandwidth and extremely narrow antenna beam. Thus, it is easier to achieve high-resolution for imaging and detection applications. The unique properties, such as penetration for majority non-polar materials, non-ionizing characteristic and the spectral fingerprint of materials, makes THz imaging an appealing artifice in the military, biomedical, astronomical communications, and other areas. However, THz radiation’s current low power level and detection sensitivity block THz imaging system from including fewer optical elements than the visible or infrared range. This leads to imaging resolution, contrast, and imaging field of view degenerate and makes the aberration more serious. THz imaging based on the space Fourier spectrum detection is developed in this thesis to achieve high-quality imaging. The main concept of Fourier imaging is by recording the field distribution in the Fourier plane (focal plane) of the imaging system; the information of the target is obtained. The numerical processing method is needed to extract the amplitude and phase information of the imaged target. With additional process, three-dimensional (3D) information can be obtained based on the phase information. The novel recording and reconstructing ways of the Fourier imaging system enables it to have a higher resolution, better contrast, and broader field of view than conventional imaging systems such as microscopy and plane to plane telescopic imaging system. The work presented in this thesis consists of two imaging systems, one is working at 300 GHz based on the fundamental heterodyne detection of the THz radiation, the other is operated at 600 GHz by utilizing the sub harmonic heterodyne detection technique. The realization and test of the heterodyne detection are based on the THz antenna-coupled field-effect transistor (TeraFET) detector developed by Dr. Alvydas Lisauskas. Both systems use two synchronized electronic multiplier chains to radiate the THz waves. One radiation works as the local oscillator (LO), the other works as illumination with a slight frequency shift, the radiations are mixed on the detector scanning in the Fourier plane to record the complex Fourier spectrum of the imaged target. The LO has the same frequency range as the illuminating radiation for fundamental heterodyne detection but half the frequency range for the sub-harmonic heterodyne detection. The 2-mm resolution, 60-dB contrast, and 5.5-cm diameter imaging area at 300 GHz and the of 500-μm resolution, 40-dB contrast, and 3.5-cm diameter imaging area at 600 GHz are achieved (the 300-GHz illuminating radiation has the approximate power of 600 μW , the 600-GHz illuminating radiation has the approximate power of 60 μW ). The thesis consists of 6 parts. After the introduction, the second chapter expands on the topic of Fourier optics from a theoretical point of view and the simulations of the Fourier imaging system. First, the theory of the electromagnetic field propagation in free space and through an optical system are investigated to elicit the Fourier transform function of the imaging system. The simulation is used for theoretical considerations and the implementation of a Fourier optic script that allows for numerical investigations on reconstruction. The preliminary imaging field of view and resolution are also demonstrated. The third chapter describes the Fourier imaging system at 300 GHz based on the fundamental heterodyne detection, including the experimental setup, the 2D, and 3D imaging results. The following fourth chapter reports the integration of the TeraFET detector with two substrate lenses (one is a Si lens on the back-side Si substrate, the other is a wax/PTFE lens on the front side containing the bonding wires) for sub-harmonic heterodyne detection at 600 GHz. The characteristic of the wax/PTFE lens at THz range is presented. After that, the compared imaging results between the detector with and without the wax/PTFE lens are shown. The fifth chapter extends the demonstration on the lateral and depth resolution of the Fourier imaging system in detail and uses the experimental results at 600 GHz to validate the analytical predictions. The comparison of the resolution between the Fourier imaging system and the conventional microscopy system proves that the Fourier imaging system has better imaging quality under the same system configuration. The last chapter in this thesis concludes on the findings of the THz Fourier imaging and gives an outlook for the enhancement of the Fourier imaging system at THz range.