2014
DOI: 10.1364/ol.39.005170
|View full text |Cite
|
Sign up to set email alerts
|

301-nm wavelength tunable differentially driven all-polymer optical filter

Abstract: An optical filter based on all-polymer grating-assisted directional coupler is demonstrated. The wavelength tuning is differentially driven. The heater-electrodes created on the sidewalls of the polymer ridge can either blue- or red-shift the central wavelength. A total tuning range of 301 nm is achieved experimentally. The maximal local temperature gradient introduced across the coupler region is only 55°C-68°C. The filter is also insensitive to uniform ambient temperature change. Central wavelength jitter of… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
5
0
2

Year Published

2015
2015
2018
2018

Publication Types

Select...
5
2

Relationship

1
6

Authors

Journals

citations
Cited by 9 publications
(7 citation statements)
references
References 10 publications
0
5
0
2
Order By: Relevance
“…The experimental results are in good agreement with the design. The switching speed is limited to a few tens of milliseconds, similar to the polymerbased thermo-optic components published previously [6][7][8][9][10][11][13][14][15][16].…”
mentioning
confidence: 87%
See 1 more Smart Citation
“…The experimental results are in good agreement with the design. The switching speed is limited to a few tens of milliseconds, similar to the polymerbased thermo-optic components published previously [6][7][8][9][10][11][13][14][15][16].…”
mentioning
confidence: 87%
“…The heater electrode is buried ∼2.5 μm below the waveguide, and deep air trenches are added to confine the thermal power [14]. This layout, though not the most efficient in generating a temperature gradient to drive the TOS [15,16], proves to be beneficial for the long-term operation of the tunable Bragg grating against heater electrical breakdowns [6,14]. The Y -branch angle is increased to 1.2°and the TOS length is limited to ∼400 μm.…”
mentioning
confidence: 99%
“…Low-cost and high-efficiency packaging of these devices is crucial in order to enable an economically viable market. The most prominent methods to couple light into a single-mode polymer waveguide include edge coupling using lensed fiber [1,2,22,33] and surface coupling using grating couplers [34][35][36][37][38][39]. Although lensed fibers provide acceptable coupling efficiencies, they are more expensive than standard single-mode fibers (SMFs) and are difficult to package due to their limited misalignment tolerance [23,40].…”
Section: Introductionmentioning
confidence: 99%
“…Although lensed fibers provide acceptable coupling efficiencies, they are more expensive than standard single-mode fibers (SMFs) and are difficult to package due to their limited misalignment tolerance [23,40]. Conventional polymer grating couplers provide limited coupling efficiency in a narrow bandwidth, due to the small refractive index contrast between the polymer materials [38,39]. Some schemes utilize a thin high index coating in order to achieve the required phase matching condition [35][36][37] and to improve coupling efficiency; still the bandwidth is not large enough to cover both C and L bands.…”
Section: Introductionmentioning
confidence: 99%
“…Το σύστημα θέρμανσης πυθμένα χρησιμοποιείται ευρέως σε συντονιζόμενες συσκευές λέιζερ, εξασφαλίζοντας επίσης μια μακροπρόθεσμη αξιόπιστη λειτουργία [119][120][121]. Ο πλευρικός θερμαντήρας είναι κατάλληλος για την αύξηση θερμοκρασίας στα επίπεδα οπτικά κυκλώματα (PLCs) στην κάθετη κατεύθυνση Χ και αποδεικνύεται χρήσιμος σε συσκευές που στηρίζονται στη διαφορά του δείκτη διάθλασης μεταξύ των στοιχείων [122,123]. Για μια επιλεγμένη διάταξη θερμαντήρων, οι δομικές παράμετροι όπως το μέγεθος της κορυφογραμμής του πολυμερούς, το πάχος του υποστρώματος και οι διαστάσεις του αεραγωγού μπορούν να ποικίλουν για να επιβραδύνουν τη θερμική μεταφορά και να βελτιώσουν την απόδοση θέρμανσης.…”
Section: παθητικός πολυμερικός κυματοδηγός και σχεδίαση θερμικού ηλεκτροδίουunclassified